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Abstract

An analytic model ("vertical rotating draft"), which includes the gross
features of a supercell storm on an f-plane, undergoes an inertial oscilla-
tion that appears to have been overlooked in previous analytic and numer-
ical models. The oscillation is nonlinear and consists of a long quiescent
phase and a short intense phase. During the intense phase, the rotating
draft has the following features of a suPercell: the diameter of the core
contracts as it spins up and expands as it spins down," if vertical wind
shear is included, the track of the rotating draft turns to the right (an

anticyclonic rotating draft turns to the left); this turning point is followed
by a predominantly upward flow; and the horizontal pressure gradient is
very small (a property of most tornadoless supercells). The rapid spin-up
during the intense phase and the high Rossby numbers obtainable establish
the ability of the Coriolis force to spin up single cyclonic or anticyclonic
superceIls by means of this inertial oscillation. This surprising result has
implications for numerical supercell simulations, which generally do not
rely on the Coriolis force as a source of rotation. The physics and math-
ematics of the inertial oscillation are given, and the solution is applied to
a documented supercell.

1. Introduction

Inertial oscillations are known to occur in the oceans. However, as Holton (ref. 1) states,

"Pure inertial oscillations are apparently not of importance in the Earth's atmosphere." Our

main objective is to present a new analytic model (vertical rotating draft) that exhibits an
inertial oscillation in the middle troposphere. The model results from attempting to include

(albeit very crudely) more of the gross features of a supercell storm than have been included

in previous analytic models (refs. 2 through 8). (A supercell storm is a rotating thunderstorm
that can generate tornadoes and hail.) These features are its net draft, rotation, vertical wind

shear, divergence resulting from the expansion of rising air parcels, buoyancy, translation, and

time dependence. The inertial oscillation occurs when the Coriolis force is also included.

Inertial oscillations appear to have been overlooked in the previous analytic models and in

numerical simulations of supercells (refs. 9 through 13). This oscillation, which engages all
features of the rotating draft, is described mathematically and physically. Other objectivcs are

to apply the analytic solution to a documented supercell and to discuss its implications for
the numerical simulations, which presently use other means than the Coriolis force to develop
rotation.

The analytic model is defined in section 2. An inner solution and matching outer solution

are given in appendix A for a basic rotating draft, one that oscillates but does not translate. A

generalized inner solution, which includes translation but is not matched to the environmental
flow (outer solution), is given in section 3. The analysis reduces to a set of nonlinear ordinary

differential equations (ODE's) for vorticity, divergence, core radius, translation. These ODE's are

numerically integrated forward in time and applied to a documented supercell in section 4. The
inertial oscillation is described physically in section 5. Its implications for numerical simulations

are discussed in section 6. The translational equations are interpreted physically in appendix B.

Other features of the inertial oscillation are given in appendix C. These features include the

effects of varying the peak Rossby number on the nonlinear waveforms of vorticity, divergence,

and buoyancy; the inertial oscillation of an anticyclonic rotating draft; and an anticyclonic
steady-state solution. A video supplement has been prepared and is available for purchase. A



requestform and a descriptionof the videoare foundat the backof this report. An earlier
versionof this videowaspresentedat aconference(ref. 14).

2. Model Description

2.1. Coordinate Frame

The coordinate frame is a local tangential Cartesian frame whose origin is fixed at a point on

the surface of the Earth (mean sea level) and whose x, y, and z axes point eastward, northward,

and upward, respectively, as shown in figure l(a). (Cylindrical coordinates r, 0, z are also used,

as shown in fig. l(b).) Although the x and y axes do not curve with the surface, this frame is
adequate for describing tropospheric flows within a horizontal radius of about 60 km (ref. 15).

This radius is large enough to contain the convective core of a supercell storm. However, the
outer flow will exceed this radius. The use of spherical coordinates, although desirable, is beyond

the scope of this paper.

In the Cartesian frame, tlle fluid velocity is denoted by v = (u,v,w), the vorticity by

w = ({, r_,_), the divergence by D, and the angular velocity of the Earth by _2 = (0, _2y, gtz).

Although _y and _z are functions of y, we shall neglect this dependence and treat them as
constants ("f-plane" approximation).

2.2. Storm Idealizations

Doppler radar measurements of a supercell storm by Miller, Tuttle, and Knight (ref. 16) show

an inflow layer near the surface, an outflow layer near the top of the storm, a principal updraft
that has its maximum at midheight, a secondary updraft, and a downdraft of lesser magnitude.

While retaining the gross features of this supercell, we greatly simplify its structure, as

shown in figure 2, so that it can be treated analytically. The analysis is limited to the middle
tropospheric layer between b and h, where b is the height of the surface layer and h is the height

of the upper layer. Friction, heat conduction, and radiation are neglected in the middle layer,
and tornadoes, which have large internal pressure drops, are assumed to be absent. Compatible

solutions for the flows in tile surface and upper layers are assumed to exist but are left for future
work.

The core of the rotating draft is bounded laterally by a cylindrical interface of radius a(t),

which distinguishes the core from the outer region or environment. The jump conditions that

apply at this interface are that the interface must move with the flow and that the pressure must
be continuous across it. These jump conditions are enforced in the basic solution (appendix A),

where they will determine the core radius a(t) and the core buoyancy B(t). However, for the

generalized rotating draft that translates (section 3), no attempt is made to match the inner
solution to the outer flow by applying the jump conditions. Instead, we assume that such

matching is always possible and that a(t) and B(t) are the same as in the basic, nontranslating
solution.

As shown in figure 2, the location of the rotating draft centerline on the horizontal plane is

given by (Xc(t), yc(t)). The rotation is represented by a Rankine vortex of vorticity _(t), which
is uniform inside the core and zero in the outer region. The density p is taken to decrease

exponentially with height z. This idealization enables rising parcels of air to expand with

divergence D(t), which (like _(t)) is taken to be uniform inside the core and zero in the outer
region. The core fluid is taken to be uniformly buoyant, as described by the normalized density

deficit B(t) which wilI be simply called the "buoyancy." Vertical wind shear is represented by
the horizontal vorticity components {(t),rl(t), which are also taken to be uniform inside the

core. When our crude analytic model is compared with an actual supercell, the fields _(t), D(t),

2



B(t) are identified with the instantaneous spatial averages in the core of the actual vorticity,
divergence, buoyancy.

The density of the outer fluid at radius a is given by the idealization (ref. 6)

p°(a)=p_ e -_Z (la)

where Z - z - b, p_ is a constant that represents the density at level b just outside the core, and
e is a constant that represents the inverse of the density scale height. (The fields outside the

core (a _< r) will be distinguished by the superscript o.)

Inside the core, the density is prescribed by

p = p_ [1 - B(t)] e -¢z (ib)

where the buoyancy B << 1 (a restriction that the supercell solution easily satisfies). Solving

equation (lb) for B gives

B -- P°(a) - p (lc)
p°(a)

which confirms that B is the normalized density deficit in the core. The corresponding buoyant
force density fB (in N-m -3) is given by

f, = g [p°(a)- o]= pgB (ld)

where B 2 has been neglected.

The continuity equation is given by

Op
0---[+ v. Vp + pD = 0 (2a)

where D = div v. By substituting the inner density (eq. (lb)) into equation (2a), we obtain in
the core

D(t) = e w(t) (2b)

where we have applied the Boussinesq approximation (ref. 17) in neglecting the B term, whose

smallness can afterwards be confirmed. In this approximation, we assume that the small density

changes that correspond to the time-dependent buoyancy B(t) do not affect the divergence D(t).

By equation (2b), the draft velocity w is also spatially uniform in the core. Hence, D is a purely

horizontal divergence given by
Ou Ov

D = + (2c)

As mentioned earlier, this divergence results from the expansion of ascending air parcels. The

horizontal radial velocity resulting from D is proportional to the radius r inside the core and

inversely proportional to r outside (like the rotational flow of the Rankine vortex) and it is
uniformly distributed over the height of the middle layer (b < z < h).

Also included in the core is a horizontal flow with vertical wind shear, which is represented

by the constants Ub and Vb and the horizontal vorticity components _(t) and r/(t), as explained
in section 3.

3



3. Inner Solution

3.1. Velocity Field

At time t, the vertical axis of the rotating draft is located at Xc(t), yc(t), and the velocity
field inside the core is given by

1
u i x, y, z, t) = Ub + T](t) Z + _ [D(t) X(x, t) - _(t) Y(y, t)] (3a)

1
v(x, y, z, t) = Vb - _(t) Z + -_ [D(t) Y(y, t) + _(t) X(x, t)] (3b)

w(x, y, z, t) = w(t) - D(t) (3c)

where X(x, t) = x - Xc(t), Y(y, t) = y - yc(t), and Ub and Vb are constants that represent the

uniform part of the horizontal flow at the base of the core. The terms _(t) Z and -_(t) Z describe
the vertical wind shear that corresponds to the horizontal vorticity. The terms -_(t) ]//2

and _(t) X/2 represent the inner flow of the Rankine vortex, which rotates as a solid body
with angular velocity given by

b ¢
= ff (4)

The terms D(t) X/2 and D(t) ]//2 represent the axisymmetric horizontal radial flow that results
from the divergence.

Tile density (eqs. (1)) and velocity (eqs. (3)) are referred to level b at the base of the core.

Actually, we could use any reference level m, where (b _< rn _< h), by making the substitution
(Ub, Vb, p_, z - b) --* (Urn, Vm , pT°_,z - m ). The velocity field (eqs. (3)) represents the zeroth- and
first-order terms of a Taylor series in X, Y, Z with coefficients that are unknown functions of t.

Similar solutions may" exist for higher order terms of this series, which would represent more
complex inner structures.

3.2. Momentum Equation

Tile inviscid momentum equation is given by (refs. 18 and 15)

0v V v2 Vp Vq_ - 21_ × v (5)
0-T +w×v+ 2 - p

where

v fluid velocity, m-s- 1

w vorticity, curl v, s -1

_j2 ----V-V

p pressure, Pa

p density, kg-m -3

q5 geopotential, gz, m2-s -2

g gravitational acceleration, 9.81 m-s -2

angular velocity of the Earth, rad-s -I

4



Theleft-handsideofequation(5) representstheaccelerationof afluid parcel,andtheright-hand
siderepresentsthe correspondingforceperunit mass.

Solvingequation(5) for Vp andsubstitutingtheinnervelocityfield (eqs.(3)) give

Op

Ox 2

P [ I(DY+_X) 1+ _ (_ + 4fftz)Vb-{Z+-_

pD[2 Ub + rIZ + -21(DX - _Y)] (6a)

Op

Oy
"(bY + - c: c- - -2

1 (DX - _Y)]P (_ + 4az) Ub+_Z+ _2

pD[2 Vb-_Z+-_!(DY+_X)] (6b)

Oz P (g + iv) + 2p_y _TZ + -_

where

magnitude of angular velocity of Earth, rad-s -1

fry = gt cos¢, s-1

f_z = f_ sine, s-1

¢ latitude of local tangential frame origin, rad

and dots denote time derivatives and p is given by equation (lb).

(6c)

3.3. Second-Order Partial Derivatives

Pressure jumps have been observed at gust fronts in the surface layer (0 < z < b). (See

refs. 13 and 15.) However, in the middle layer (b < z < h), we assume that the pressure p
and its first- and second-order partial derivatives are continuous functions of x, y, z (except at

radius a, where p must be continuous, but its derivatives may be discontinuous). It follows that

(ref. 19)

02p -- 02p 1

Ox Oy Oy Ox 1
02p 02p

Ox Oz Oz Oz

02p 02p

Oy Oz Oz Oy

(r<a, b<z<h) (7)



3.4. Nonlinear Harmonic Equations

Substituting the cross derivatives of equations (6) into equations (7) with fly and f_z taken

to be constants, dividing by p, and setting the coefficients of X, Y, and Z individually to zero

in each equation give the following set of coupled, nonlinear, ordinary differential equations:

2D _2__y DD (U b - Xc) - _ (Vb - Yc) + --71 -= -t- 4f_zY b
c c

(8a)

D (V b Yc) + _ (Ub J:c) 219 2...... f_y_ - 4_zU b

1

: _ [7/ (¢ + 4[2,) - D(]

1

//= -_ [_ (¢ + 4flz) + O771

(8b)

(8c)

(8d)

= -D (_ + 2f_z) (8e)

1
r[_ (_ + 4ftz)- D2 j1 (8f)

Equations (8c)-(8f) are equivalent to the vorticity and divergence tendency equations obtained

by taking the curl and divergence of the momentum equation (5). Equations (8a) and (8b) are

interpreted physically in appendix B. They can be solved for the translational velocity a:c, _)c of

tile rotating draft

) ( )]:i:c = U b + _ y + ¢2 + D_ _ - _ + 2f_zUb + D D _ 2_zVb (9a)

,)c=½+<2+D 2 ¢ --{_+2azVb +D -c_+

The inverse scale height ( appears irreducibly in the denominator of the second term on the

right-hand side of equation (9a). Therefore, this term, which results from the Coriolis force, is

proportional to the scale height of the atmosphere. For the Earth, at the equator where _y is

maximal, this term is about 1 m-s -1. No similar term occurs in equation (9b) because fix = 0.

Equations (8c) (8f) and (9) can be integrated numerically to obtain the life cycle of the rotating
draft, as is done in section 4.

3.5. Pressure Field

The inner pressure field p is obtained by first substituting equations (8) and (lb) into the

pressure gradient (eqs. (6)) to yield

cOp _ p_ e_eZ (1 - B) ayD (10a)
Ox e

COP-- P_ e -ez (1 - B) f_y( (lOb)
Oy e

6



These partial

Oz p_ e-cZ (1- B) g++-29ty Ub + 7?Z + -_

derivatives can now be integrated to obtain the inner pressure field p as

(10c)

p(x, y, z, t) = 05 e-_z (1 - B) g + _ - 2U_ + Ub+ _z +
£

(lla)

The unknown buoyancy B(t) in this formula could, in principle, be determined by solving for

the outer flow and equating the inner and outer pressures at the interface. As mentioned earlier,

this procedure is carried through only for the basic rotating draft in appendix A. However, if we
assume that the result in equation (All) also holds here (for a rotating draft that translates),

we may write

p(z,v,z,t) = P_ c-_z g - 2a_ 1 - + ub + vz + (llb)

where B 2 has been neglected. This result shows that the rotating draft has no pressure drop

at its center. We shall see that the slight horizontal pressure gradient resulting from the _ty

term does not impede the inertial oscillation. If _y is neglected, the horizontal pressure gradient
becomes zero, in agreement with the inertial oscillations treated in references 1 and 15, where

_y is also neglected.

The smallness of the horizontal pressure gradient is in reasonable agreement with data from

supercells without tornadoes, where the maximum horizontal pressure variation is typically

about 5 mb (ref. 13). The inverse scale height _ appears in the denominator of equation (llb).
Therefore, as expected, the pressure at the base of the core (z = b) is roughly proportional to

the scale height of the atmosphere.

3.6. Thermodynamic Energy Equation

Since the density and pressure are now known, the temperature T can be determined

approximately from the equation of state for a dry perfect gas

p = pRT (12)

where R, the gas constant, equals 287 J-kg-]-K -1. The temperature is determined for the basic

rotating draft in section A4. _ _ _

The thermodynamic energy equation is given by (ref. 1)

_/=pcp +v _Y T- +v._7 p (13a)

where Cp, the specific heat at constant pressure, equals 1004 J-kg-l-K -1 and // (the diabatic

heating rate in W-m -3) is the heating rate per Unit volume due to radiation, heat conduction,

viscous dissipation, and latent heat release. For a rotating draft in the middle troposphere,

the main source of diabatic heating is latent heat release and the other sources are neglected,

as mentioned earlier. Since alI the quantities on the right-hand side of equation (13a) are
known, this equation can be used to determine t_he latent heat release required by the flow. The

corresponding condensation rate of water vapor density t)v (in g-s-l-m -3) is given by

_bv_ Lc (13b)

7



whereLc, the latent heat of condensation, equals 2.5 × 103 j_g-1. The total heating and water

vapor influx can be obtained by integrating equations (13a) and (13b) over the core volume, as

is done for the basic rotating draft in section A4.

4. Numerical Integration and Supercell Solution

4.1. Inertial Oscillation of _ and D

Equations (8e) and (8f) are coupled nonlinear equations that can be numerically integrated

for _(t) and D(t). (The draft velocity w(t) is also obtained from the proportionality in eq. (2b).)

When this integration is done, the solution is found to oscillate, as shown in figures 3(a) and (b).
This oscillation results from the interaction of the Coriolis force with _ and D. Dimensional

analysis shows that the period 7 (in s) is inversely proportional to _tz, and the numerical solutions

provide the constant of proportionality
7r

T = -- (14)
_z

This period, which is half that of a Foucault pendulum, is characteristic of inertial oscillations

(refs. 1 and 15). (In the southern hemisphere where f_z is negative, the divergence D, as plotted

in fig. 3(b), remains the same, but _, as plotted in fig. 3(a), undergoes a sign reversal.)

The inertial oscillation described by equations (8e) and (8f) is an autonomous relaxation
oscillation, as discussed in reference 20. That is, it is an unforced, nonlinear oscillation whose

period consists of a long quiescent phase and a short intense phase. (For the solution shown in

fig. 3(a), the intense phase is defined by _ > 0 and the quiescent phase by _ < 0.) The physics
of this oscillation is discussed in section 5.

The parameters and the initial values used in the numerical integration are listed in table I

and were chosen to apply to a well-documented supercell storm (refs. 21 through 24). This storm,

which was classified as a supercell of moderate intensity, generated hail up to 1.5 cm in diameter.
The storm occurred at latitude 41 ° N; hence, _z equals 4.77 × 10 -5 s -1 and v = 18.3 hr. The

integration was started midway through the intense phase of the cycle; hence D(0) equals 0. The

observed lifetime of the storm was about 5 hr. This lifetime corresponds in the model to the
duration of the intense phase, which we took to be 5.33 hr. As shown in appendix C, this duration

is roughly proportional to _(0) -1/2, and it was simulated by taking _(0) -- 3 x 10 -4 s-1. The

resulting peak values for D(t) were ±1.86 × 10 -4 s-1 and for w(t) were ±1.49 m-s -1, where we
4 1

have taken c = 1.25 × 10- m- . These values are reasonable for spatial averages in the core of
the supercell, as is explained in section 4.3.

When equations (Be) and (8f) are written in the conservative form,

OA

0--t-+ divAv = SA (15a)

where A represents _ or D (or any other scalar or vector component), the supply terms for
and D are found to be

S i = -2D_tz (15b)

1
SD = _ (D _ + _2) + 2_z< (15c)

/ \

Therefore, the interaction of D with ftz supplies the vertical component of vorticity (. This

supply is positive when D and w are negative; that is, during the downdraft phase, in

agreement with figures 3(a) and (b). The supply of corresponding angular momentum density

Lz = (r × pv) • k in the core is found by substituting Lz for A in equation (15a) and is

SL_ = -2_zrpvr (15d)

8



whereVr, the radial flow resulting from D, is Dr�2. Therefore, the action of f_z on the horizontal

radial flow supplies the angular momentum. Again, this supply is positive when Vr, D, and w

are all negative.

The implication of figures 3(a) and (b) for an actual supercell is that its rotation rate increases
when the vertical flow in the middle troposphere is predominantly downward and decreases

when this flow becomes predominantly upward. In the model, the transition from downdraft to

updraft occurs in the middle of the intense phase when w(t) = 0, as shown in figure 3(b). For

a supercell, this "transition point" is envisioned to occur when the decaying downdraft and the

growing updraft form a couplet whose spatial average is momentarily zero.

By equation (15c), the interaction of ( (or the corresponding azimuthal flow) with f_z

contributes to the supply of D. This contributi6h_auses D to become positive in the middle of

the intense phase and negative in the middle of the quiescent phase, as also shown in figure 3(b),

so that the cycle repeats. .......

4.2. Buoyancy

The supply of kinetic energy density KE = _pv • v in the core of the rotating draft is given

by (eq. (15a))
SKE = --v •Vp -- pwg (16a)

Substituting the pressure given by equation (llb), with the fly term and B 2 neglected, gives

SKE = wfB (16b)

where fB is the buoyant force density given by equation (ld). Therefore, the buoyant force

acting on the draft supplies the kinetic energy for the fluid in the core. The net supply of kinetic
energy over one complete cycle is zero.

For the basic rotating draft that does not trans!ate, the buoyancy is given by equation (All)

as B = _/g. If we assume that this expression also holds during translation, we may compute
B by referring to equations (2b) and (8f) as

1 [((_+4f_z)-D2 ] (17)B = 2- g

A plot of B against t for the supercell solution is shown in figure 3(c). Comparison of figures 3(c)

and (b) shows that the downdraft which initiates the intense phase results from a weakly negative

buoyant force acting for a long time and that the transition to an updraft results from a stronger
positive buoyant force acting for a short time. The peak positive buoyancy corresponds to an

average temperature excess in the core of 0.016 K' as also shown in figure 3(c).

4.3. Core Radius a and Angular Displacement 0

Again we assume that a result that holds for tile basic rotating draft can also be applied

to the translating solution. With ((t), D(t), and w(t) known, equations (A3) and (4) can be

numerically integrated to obtain the core radius a(t) and the angular displacement of the core

fluid O(t) from the initial values a(0) = 13.8 km and 0(0) = 0 rad, as shown in figures 3(d)
and (e). This value for a(0) gives the measured mass inflow rate of fI = 1.30 x 109 kg-s -1 for

w = 1.49 m-s -1 (its maximum value). This updraft maximum occurs at t = 5 ks, when the

core radius a = 19.0 km, which agrees well with tile observed radius of 20 kin. (See ref. 21.)

For this calculation, we used reported values for the height of the core base b = 4.43 km above

mean sea level, for the density at this height p_ = 0.77 kg/m 3, and for the corresponding

pressure p(b) = 6.05 x 104 Pa. The value e = 1.25 x 10 -4 m -1 was then determined by using
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thedominant(first) termof thepressureformula(11b).Thevaluechosenfor a(0) also gives the
rotating draft a maximum circulation at t = 0 of F(0) = 7ra(0)2_(0) = 1.80 x 105 m2-s -1, which

agrees reasonably well with typical measured values for supercells. (See ref. 13.)

Comparing figures 3(a) and (d) shows that the radius a(t) contracts to its minimum value

as _(t) reaches its peak value and expands as if(t) decreases; this is in agreement with supercell
observations in reference 13. According to the model, this contraction and spin-up occur during

the downdraft phase, as shown in figure 3(b). The contraction is caused by the horizontal

convergence that results fi'om the compression of sinking air parcels. The horizontal convergence

also interacts with the Coriolis force to produce the cyclonic spin-up. The model suggests that a

predominantly downward flow causes the contraction and spin-up of a supercell storm. However,
the data are inconclusive about this predominantly downward flow, as discussed in section 4.7.

4.4. Diabatic Heating and Moisture Influx

In order to carry out the diabatic heating and water vapor calculations for the supercell

solution (again assumed to be the same as for the basic solution) in section A4, we need to know

the height h of the upper layer, as shown in figure 2. Although the visible cloud reached a height

of 12.4 km (ref. 21), the height of tile upper layer was estimated as h = 8 km from range-height
indication (RHI) radar echo profiles given in the reference. Also given are the temperatures

T = 253 K at height h and T = 273 K at height b.

The diabatic heating is given by equation (A21), where Q(t) (in W) is the total heat per second

supplied to the core. This result for _) is plotted against t in figure 3(f). Also shown in this

figure is the corresponding water vapor influx Air (in g-s-l), as given by equation (A22). The net

supply of diabatic heating or water vapor over one complete cycle is zero. (Figs. 3(a) (f) show

that _(t), B(t), and a(t). are symmetric functions about the points t = nr/2, where n = 0, 1,2,...
and D(t), w(t), O(t), Q(t), and Air(t) are antisymmetric.)

The solid circles in figure 3(f) mark the points where w = 1.49 m-s -1 (its maximum value).
The corresponding value _'4v = 6.28 x 109 g-s -I agrees reasonably well with the measured net

water vapor influx of 8.5 x 109 g-s.-1 (ref. 21). Although w subsequently decreases (as shown in
fig. 3(b)), figure 3(f) shows that My continues to increase, and it reaches its peak value during

the quiescent phase. This feature of figure 3(f) is discussed further in section 4.7.

4.5. Constant of the Motion and Froude Number

The scalar resultant of the vortex and divergent flows has its maximum value at radius a.

This flow speed, denoted va(_, D), is a constant of the motion and is given by

a 1/2
va(_,D)= _ @2 + D 2) (18a)

Its constancy is easily verified by differentiating with respect to t and substituting the tendency

equations (8e), (8f), and (A3). The constancy of va(¢,D) is consistent with inertial flow as
described in section 5.

For the supercell solution, va(_, D) equals 2.07 m-s -1. Because this value is a constant of

the motion, the axisymmetric part of the horizontal flow in the middle layer (b < z < h) is

not intensified as the core radius a(t) contracts. The draft, however, is intensified, as shown in

figure 3(b). Because the streamlines of the draft extend into the surface layer (0 < z < b), the
horizontal flow in the surface layer is also intensified as the core contracts.
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Fromthe constantof the motiongivenby equation(18a),the inversescaleheighte,andthe
gravitationalaccelerationg, we can define a Froude number F by

F = ca2
4-'-g-(_2+ D 2) (18b)

where F is also a constant of the motion. This Froude number is used in the outer solution of

appendix A. For the supercell solution, F equals 5.48 × 10 -5.

4.6. Horizontal Vorticity Components _ and 77

The horizontal vorticity tendency equations (8c) and (Sd) can be integrated numerically to

obtain _(t) and T/(t) in the core of the rotating draft. These equations show that if _ and _ are
initially zero, they will remain zero. However, if not zero, they too will oscillate, being forced

by the inertial oscillation of _ and D, as shown in figures 3(g), (h), and (i). The horizontal

vorticity vector rotates anticyclonically with changing amplitude and rotation rate. (It rotates

cyclonically for an anticyclonic rotating draft, as discussed in section C2.) Its rotation rate is

rapid during the intense phase and slow during the quiescent phase.

Our choice of initial values, 4(0) = -1.74 x 10 -4 s -1 and _/(0) = 9.85 × 10-4 s -1, will be

explained later. Figure 3(i) shows that the computed inner horizontal vorticity has a maximum
value of about 1 x 10-3 s -1, which is about one fifth the measured horizontal vorticity in the

environmental flow of the supercell. (See ref. 21,)

The supplies of _ and 77are given by

1

$4 -- _ [D_ + _7(_ + 4_tz)] (19a)

1

S_ = _ [Dr/- _ (_ + 4_z)] (19b)

The first term on the right-hand side of both equations represents stretching of horizontal

vorticity, and the second term represents tilting of vertical vorticity.

4.7. Translation Xc, Yc and Track Xc, Yc

At this point, all the quantities in the translation equations (9) are known, and iCc(t), yc(t)

can be plotted, as shown in figures 3(j), (k), and (1). These equations also can be integrated

to obtain xc(t), yc(t), which describe the track of the rotating draft, as shown in figures 3(m),

(n), and (o). The eastward drift of the looping track shown in figure 3(0) results from the
constant term 2_y/e in equation (9a), which for this computation has the value 0.88 m-s -1. The

contributions of Ub, Vb to the drift integrate to zero during each cycle, although these constants
do affect the translation during phases of the cycle, including the intense phase. The values

Ub = 8.33 m-s -1 and Vb = 1.42 m-s -1 were chosen to simulate the mean translation observed

for the supercell about 14 m-s -1 from the west=southwest.

Figure 4(a) shows an aerial sequence of core images superimposed to scale for 1 cycle of the

supercell solution. Figure 4(b) shows the corresponding side views with the vertical dimension

exaggerated and the relative environmental flow not shown. The computational time t (fig. 3)
is correlated with mountain daylight time in table II for comparison with the radar data shown

in figure 5.

The sudden change in _c(t), yc(t) midway through the intense phase causes the right turn

in the track, which is a salient feature of supercells. Klemp (ref. 12) states "The mechanism
that causes the transverse propagation of supercell storms has remained an intriguing although

illusive issue over the years." The inertial oscillation offers the following insight.
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Theturningpoint for eachcyclein figure3(0)is definedasthemidpointof the right-turning
arc. Comparingfigures3(k) and(b) showsthat this turningpoint is the sameasthetransition
point for the draft. The coincidenceof thesetwo pointsis confirmedby equation(9b). The
changein yc(t) results from the draft velocity w(t) = D(t) interacting with the horizontal

vorticity _(t), _(t). The right turn occurs as D and _ change signs and _ and U remain positive;

that is, the right turn results from a rapid reversal of the downdraff interacting with a rapid

anticyclonic rotation (through about a quarter turn) of the inner horizontal vorticity vector.
Other treatments of supercells have also linked their transverse propagation to the horizontal

vorticity or vertical wind shear (refs. 2 and 11).

For an anticyclonic rotating draft with otherwise identical initial conditions (section C2), the

plots for D and 77would be about the same as those shown in figures 3(b) and (h). However,

the plots of _ and _ are approximately mirror images of figures 3(a) and (g). Consequently, the

track turns to the left, which is also in agreement with observation (ref. 3); that is, the left turn
of an anticyclonic rotating draft results from a rapid reversal of the downdraft interacting with
a rapid cyclonic rotation of the inner horizontal vorticity vector.

The initial values _(0), _(0) were chosen to simulate the 33 ° rightward turn of the documented

supercell. Figure 5 shows the computed track (one cycle from fig. 3(o)) superimposed on radar
echoes of the supercell obtained at 30-rain intervals. The turning point occurred at 1602 MDT

when the supercell crossed the Wyoming-Nebraska boundary. According to the theory, this

turning point is the same as the transition point for the draft; that is, west of the Wyoming-
Nebraska boundary the computed draft (fig. 3(b)) is downward (which corresponds to an actual

vertical flow that is predominantly downward) and to the east it is upward.

Data support the solution east of the turning point. A net upward mass flux of
1.30 × 109 kg-s -1 (as mentioned in section 4.3) was measured during the period from 1614

to 1700 MDT by two circumnavigating aircraft in the surface layer. (See ref. 21.)

However, no similar measurements were made west of the turning point to detect the

predominantly downward flow indicated by the solution. The corresponding radar echoes depict
only the condensed moisture in the nascent, rapidly growing updraft. The downdraft that

(according to the theory) dominated the vertical flow at this time and caused the developing
supercell to contract and spin up would probably have been invisible to radar. Therefore, the

reported data are inconclusive about this predominantly downward flow west of the turning
point, which is an important feature of the solution.

The data also do not appear to support the solution during the quiescent phase before
1323 MDT and after 1841 MDT. Two possible explanations are offered for this apparent
discrepancy:

1. As mentioned in section 4.4, the theoretical water vapor influx shown in figure 3(f)
continues to increase until 2036 MDT, which is almost 2 hr after the onset of the quiescent
phase. Suppose that the actual supply of water vapor to the supercell should fall short

after 1841 MDT. After that time, the mathematical solution would no longer be physically
valid. A similar explanation applies before 1323 MDT. The quiescent phase of the solution

was not observed, possibly because the quiescent phase required more latent energy than
was available.

2. As mentioned in section 2.2, we have assumed that the inner solution for a rotating draft

that translates can always be matched to the environmental flow. During the intense
phase, the relative environmental flow can be blocked by the flow in the core so that

the matching assumption is satisfied; however, at the onset of the quiescent phase, as

the track turns northward and westward (into the environmental flow), the blocking fails,

matching becomes impossible, and the core is blown away. A similar explanation applies
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before1323MDT. Thequiescentphaseof tile solutionwasnot observed,possiblybecause
duringthe quiescentphasetheinnersolutioncouldnot bematchedto theenvironmental
flow.

Therefore, only the intense phase of the inertial oscillation appears to be relevant to a

supercell. Essentially all the adjustable parameters in the model (_(0), r](0), _(0), a(0), Ub,

and lib) were required to simulate the duration, diameter, vortex circulation, vertical mass flux,

water vapor influx, translational velocity, and track of the documented supercell.

5. Physics of Inertial Oscillation

5.1. Inertial Flow

We restrict the discussion in this section to the basic rotating draft, whose inertial oscil-

lation is described mathematicall.y by equations (4), (8e), (8f), (h3), (All), and (A20) for
0(t), _(t), D(t), a(t), B(t), and Q(t), with Ub = _ = Fry = _ = 7? = 0. One solution of these
equations is given in section 4, and several more are described in appendix C. Now we address

the physics of these solutions, as shown in figure 6.

A Rankine vortex in an inertial frame has a pressure drop at the center; however, tile result

(eq. (A13)) for the basic rotating draft in a local tangential frame of the Earth (fig. 1) shows
that the horizontal pressure gradient in the core is zero a characteristic of inertial flow. As

described in references 1 and 15, inertial flow is frictionless horizontal flow wherein a fluid parcel

moves with constant speed v i along a circular arc such that the centrifugal force balances tile

Coriolis force. The inertial radius Ri of the circular arc is then given (in m) by

vi (20)
Ri- 2f_z

where f_z in general varies with latitude. If Ri is sufficiently small (as in a supercell), the

variation in f_z may be neglected, and the parcel traverses a circle, as shown in figure 6(a). The

motion is anticyclonic, and the period is given by rr/flz, which is the same as the period of the
rotating draft (eq. (14)). In the following examples, we take f_z = 4.77 x 10 .5 s -1, as in the

supercell solution.

5.2. Contraction and Cyclonic Spin-Up

Figure 6(b) shows an aerial view of the core of the rotating draft at its maximum radius

a 2 ---- 57.3 km. At this time, D2 = 0, 42 = -7.24 × 10 -5 s -1, and the flow is momentarily that

of an anticyclonic Rankine vortex with no radial nor vertical flow. The speed vi of a parcel on
tile periphery of the core is given (in m-s 1) by

K21a2 _ 2.07 (21)
vi-- 2

and its inertial radius is given by

R i - 1_21a2 - 2.17 x 104 (22)
412z

The inward track (projected on a horizontal plane) of parcels on the periphery of the core is

shown in figure 6(c). Tile inertial motion causes the core to contract and spin up cyclonically.

Maximum contraction and spin-up are achieved when the parcels have traversed a semicircle.
According to this physical picture, the minimum core radius al is given by

a1=a2-2R/=1.38x 104 (23)
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whichagreeswith thevalueobtainedin section4by integratingthedifferentialequations.Since
theinertial speedvi of a parcel is constant, the maximum vorticity _ (in s-1) and Rossby nmnber

Rol are given by

[_1[ = 1_2[a2 = 3.0 x 10 -4 (24a)
al

ICll = 3.14 (24b)
Rol = 2_

which also agree with the values computed in section 4.

During the contraction and spin-up, each parcel in the core is compressed by descending
in the spatially uniform downdraft. When the core radius reaches its minimum value, the

compression ceases, and the downdraft also ceases before reversing. These physical observations

are in agreement with the draft velocity w(t) shown in figure 3(b).

A complete cycle of the inertial oscillation is depicted physically in figure 6(d). (This figure

corresponds to the computations shown in figs. 3(a) (e).) The total angular excursion of the

core fluid during 1 cycle can be determined by drawing both tangents to an inertial circle from

the center of the rotating draft, as shown. The included angle c_ is 1.32 rad, in agreement with
the numerical integration shown in figure 3(e).

The duration of the intense phase (( > 0) can be determined from the angle _ in figure 6(d).

Since '9 = 1.82 rad and the period r = 18.3 hr, the duration of the intense phase is 5.33 hr, in
agreement with the numerical integration shown in figure 3(a).

5.3. Increased Contraction and Cyclonic Spin-Up

If we hold a2 and f_z fixed but increase the magnitude of the initial anticyclonic vorticity

by taking _2 = -9.25 x 105 s -1, the inertial radius increases to Ri = 26.3 km, as depicted in

figure 6(e)i The contraction and cyclonic spin-up are now much greater, and the maximum

Rossby number, as determined from equation (24b), is Rol = 31.4, in agreement with figure 7.
The peak draft speed is now 12 m-s -1 and the buoyancy corresponds to a maximum temperature

excess of 1.06 K, as shown in figures 7(b) and (c).

The angular excursion of the core fluid, as determined from angle a, has increased to 2.44 rad,

in agreement with figure 7(e). The duration of the intense phase, as determined from angle
= 0.69 rad, has decreased to 2.03 hr, in agreement with figure 7(a). Figures 6(e) and 7(a) (e)

show how the Coriolis force in concert with the buoyant force can effect rapid spin-ups of a

vertical rotating draft by means of this inertial oscillation.

5.4. Singular Point

If we continue to increase the inertial radius Ri by increasing ]_21 (with a2 and _z held fixed),

we soon approach a singular point where R i --- a2/2, which corresponds to _2 = -2_z. This is

the singularity that separates the two solution domains of equations (8e) and (8f), as discussed
in section C2.

5.5. Anticyclonic Spin-Up

If Ri is increased past the singular point by taking _2 -----2.63 × 10 -4 s -1, the inertial

oscillation produces anticyclonic spin-up, as shown in figure 6(f). This anticyclonic spin-up

corresponds to the second solution domain of equations (8e) and (8f), as discussed in section C2

and illustrated in figure 8.
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5.6. Steady-StateAnticyclonic Rankine Vortex

If R i is further increased to equal a2, as sho_m in figure 6(g), no contraction nor spin-up

occurs, and the inertial motion corresponds to a steady-state anticyclonic Rankine vortex of

vorticity ¢ = -4_z s -1, as discussed in section C3.

Further increases in Ri correspond to anticyclonic spin-up, as already discussed, except that

the initial radius a 2 becomes the minimum radius of the oscillating core. In conclusion, tile

physics of inertial motion, as shown in figures 6(d)-(g), corresponds exactly to the mathematical

solutions given in section 4 and appendix C.

6. Implications for Numerical Simulations

Current numerical supercell simulations (refs. 8 through 13) do not depend on the Coriolis

force, but generate rotation by using a buoyant plume to lift and stretch local horizontal vortex

lines, as suggested in reference 25. This mechanism produces two counterrotating cells that split,
after which one cell often intensifies and the other decays. However, Klemp and Wilhelmson

(ref. 9) state "It should be emphasized that although we have simulated self-sustaining single-cell
storms, there is no evidence that other single-cell structures cannot exist which produce similar

storm longevity. In particular, the storms simulated here evolve through a splitting process.
For storms which do not split, other opportunities may arise for generating a self-sustaining
structure."

One of the "other opportunities" referred to could be the inertial oscillation of a vertical

rotating draft described herein. Perhaps the intense t)hase of this oscillation could be excited

in a numerical simulation that includes (1) the Coriolis force, (2) fully compressible equations,

(3) abundant water vapor in the surface layer, and (4) initialization with a plume that is large in
diameter and negatively buoyant. The negative buoyancy would induce a compressible downdraft

that, in turn, would cause horizontal convergence in tile middle tropospheric layer. The Coriolis

force, acting on this convergent flow, would spin up the cell. Concurrently, the gust front from
tile downdraft would lift the moisture-laiden surface air, causing condensational heating that

would initiate an updraft. The updraft would rapidly grow and become predominant until, at

the end of the intense phase, the cell dissipates. The numerical simulation could additionally
include horizontal flow with vertical wind shear to make the track of the cell turn to the right.

7. Concluding Remarks

The most surprising result of this theoretical research is the discovery that a vertical rotating

draft can undergo an inertial oscillation, whereby the Coriolis force can quickly generate

high Rossby number flows (cyclonic or anticyclonic). The oscillation is nonlinear, and each

period consists of a long quiescent phase when the core is large in diameter and rotates

anticyclonically and a short intense phase when the core is small and rotates either cyclonically
or anticyclonically. The oscillation is explained physically by horizontal inertial flow that is

coupled with compressible vertical flow.
= L

The inertial oscillation is engendered by (1) a constant Coriolis parameter, (2) air density
that decreases exponentially with height, (3) inviscid, compressible flow, (4) a vertical draft,

(5) vertical vorticity in the draft, (6) horizontal divergence in the draft, (7) buoyancy, and

(8) diabatic heating. These ingredients are similar to the gross characteristics of a supercell
storm. During the intense phase of the inertial oscillation, the vertical rotating draft he_s features

that agree with supercell observations, which are

1. The diameter of the core contracts as its rotation rate increases and expands as it decreases

2. If vertical wind shear is included, the track of the rotating draft turns to the right (an

anticyclonic rotating draft turns to the left)
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3. This turning point is followedby a predominantlyupwardflow

4. Thehorizontalpressuregradientis verysmall(a propertyof mosttornadolesssupercells)

Whenthesolutionwasappliedto adocumentedsupercelI,reasonableagreementwasobtained
for the longevityof the storm,its diameter,vortexcirculation,verticalmassflux, water vapor
influx, translationalvelocity,and storm track. However,the data did not appearto support
thequiescentphaseof the oscillation,andreasonsfor this descrepancyaresuggested.A critical
experimentwouldmeasurethepredominantlydownwardflowthat theoreticallyoccursbeforethe
turningpoint in asupercelltrackandcausescontractionandspin-up.Meansarealsosuggested
for excitingthe intensephaseof this inertial oscillationin numericalsimulationsof supereells.

NASA Langley Research Center

Hampton, VA 23681-0001

July 17, 1992
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Appendix A

Basic Rotating Draft That Oscillates But Does Not Translate

A1. Basic Inner Solution

For the rotating draft to remain centered on the origin (i.e., for xc(t) = yc(t) -- 0), we must

take U b = Vb ----my = _ = r/ = 0. The tendency equations (9), (8c), and (8d) for the inner

solution of the middle layer (r_< a, b < z < h) then becomeS:c----yc =_=//=0. Note that

equations (8e) and (8f), which give the inertial oscillation, are unaffected.

The inner density remains as given by equation (lb); however, the pressure (eq. (11a)) and

velocity field (eqs. (3)) become, in cylindrical coordinates

p (r, O, z, t) = g o e-eZ (Ala)[1 - B (t)] 1 +

D(t) r
W(T,O,z, t) = (Alb)

vo(r , O, z, t) = _(t--)r (Ale)
2

Vz(r, O, z, t) = D(t____) (Ald)

A2. Outer Solution

Using the Rankine vortex as a model, we take the external vorticity w ° and divergence D °
to be zero. Hence, the outer velocity field in the middle layer (a < r, b < z < h) is given by

v°(r, O, z, t) -- D(t) a2't't _ (A2a)
2r

_(t) a2(t ) (A2b)
0, z, t) - 2r

v°(r, 0, z, t) ----0 (A2c)

The field Vr is continuous at the interface r = a, as required by the jump conditions for the

continuity and momentum equations. The field v 0 is also continuous, but Vz, p, D, and _ have
finite discontinuities. The requirement that the interface move with the fluid gives

Da
a = -- (A3)

2

which will determine the core radius a(t). Still to be imposed is the jump condition that the

pressure p be continuous at r = a, which will determine the core buoyancy B(t).

A sequence in figure 9 depicts the inertial oscillation of the horizontal flow in a basic rotating

draft. The initial conditions on _, D, and a are the same as in the supercell solution of section 4,

and the sequence in figure 9 corresponds to the core sequence shown in figure 4, except that the
flows at 1523 and 1641 MDT are omitted.

17



Solving the momentum equation (5) for the pressure gradient in cylindrical coordinates and

substituting the outer velocity field from equations (A2) and the tendencies in equations (A3),
(8e), and (8f) give

( a2)OP°- gFp° 1- (A4a)
Or er 7_

O

- 0 (A4b)00

oqpO

_ gpO (A4c)
Oz

where F, the Froude number, is a constant of the motion given by equation (18b).

As with the inner solution, we require

02p ° 02p °

Or Oz - Oz Or (a<r, b<z<h) (A5)

As a consequence, tile outer density pO must satisfy

( °2)Op ° F 1 - OP°
Or = e_ -_ Oz (A6)

A solution of this equation is given by

p°- C(t) ( Fa2) (A7)rF exp -eZ 2r 2

where C(t) can be determined from the boundary value (eq. (la)):

C(t) = p_aF e F/2 (A8)

Hence, the outer density is given for the nfiddle tropospheric layer by

p°(r,O,z,t)=p_ exp -eZ+_- 1-7- _ (A9a)

Integrating for the outer pressure gives finally

_Pb exp --eZ+_ 1--_ (A9b)

Because of the smallness of F (section 4.5), these outer pressure and density fields are essentially

independent of 7" far beyond the 60-kin radial limit of the validity of tile cylindrical frame for

meteorological flows. As r _ oc, p° and p° remain bounded, as required. In fact, both slowly

approach zero in this limit. A corollary of equations (A9a) and (A9b) is that

pO= gpo (A9c)
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Upon substitution of equations (A2) and (A9a), the continuity equation (2a) indicates that

air is being entrained into the outer part of the middle tropospheric layer from the surface and

upper layers at the rate (see eq. (15a))

= pO _ (A10a)S_ -F_D-(i a2"_2r2)

where S_ is in units of kg-s-l-m -3, and pO is given by equation (A9a). Because a(t) is a
symmetric function of t and D(t) is antisymmetric; the net entrainment over a complete cycle
is zero. For the supercell solution, the maximum mass entrained during one half cycle is less

than 1 percent of the mass already present in the middle layer. Hence, the mass entrainment is

negligible, and any momentum exchange resulting from it is also negligible.

The radial pressure gradient and radial velocity supply kinetic energy to the outer flow at

the rate (in W-m -3)

OP° p°gFDa2 1- (A10b)
S_E =-vr ° 07--7 = 2_r2

1 po r;vO,,2where KE = _ [t r) + (v0)2] • Again, the net kinetic energy supplied over a cycle is zero.

The interaction of the radial velocity with f_z again supplies the angular momentuin about

the z-axis, as given for the outer flow by

S ° = -2_zrp°v ° = -f_zp°Da 2 (A10c)Lz

where L_ = (r x p°v °) • 5. Within the limitations of the cylindrical coordinate frame, these
velocity, pressure, and density fields constitute a satisfactory outer solution for the basic rotating

draft that oscillates inertially at a fixed location.

A3. Buoyancy and Inner Pressure

The buoyancy B(t) can now be determined by the requirement of pressure continuity at

r = a. Equating equations (Ala) and (A9b) for r -- a gives

B(t) = --d;(t) (All)
g

where we have used the assumption that B << i. Equation (ld) then gives

fB = p_'v (A12)

where again B 2 has been neglected. Therefore, the vertical acceleration of the core fluid is exactly

balanced by the buoyant force. The corresponding inner pressure, as given by equation (Ala),

is now independent of t and may be written as

P = 9__p_e-eZ (A13)

where again B 2 has been neglected.

A4. Temperature, Diabatic Heating, and Moisture Influx

Because the density and pressure are now known, we can determine the approximate

temperature from the equation of state for a dry perfect gas (eq. (12)). In the outer region,

this equation becomes
pO = pORTO (A14)
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Substitutingequation(A9c)andsolvingfor T ° gives (in K)

T °- g -273 (A15)
_R

Therefore, the outer solution applies to an isothermal middle troposphere.

In the core, substitution of the density (eq. (lb)) into the equation of state (eq. (12)) gives

p= p[RT(1 B) e-Ez (A16)

Eliminating p from this expression and the inner pressure (eq. (A13)) enables us to solve for the

inner temperature
T(t) = T ° [1 + B(t)] (A17)

where B 2 has been neglected and T ° is given by equation (A15). Hence, the core is also

isothermal, but its temperature varies with time to give the buoyancy shown in figure 3(e).

Heat must be supplied to the fluid in the core to effect the temporal changes in T(t) and

to maintain the isothermal state of rising and expanding air parcels. The supply of heat // (in

W-m 3) is given by the thermodynamic energy equation (13a). If the inner pressure (eq. (A13))
and temperature (eq. (A17)) are substituted, this equation becomes

cOp (A18)
il = pcpT°B - w O---z

However, this result overestimates the heating required by a supercell because of the

temperature lapse rate in the middle troposphere. The temperature in the documented supercell

(ref. 21) decreased from 273 K at b = 4.43 km to 253 K at h = 8 km. If we assume that the vertical
rotating draft solution remains valid regardless of this 7-percent departure from isothermality,

we can use the original energy equation (13a) to incorporate the temperature lapse rate as shown

OT Op (A19)
i1 = pcpT°B + pcpw Oz - w O--z

where OT/COz = -5.6 x 10-3 K-m -1. (The correction to 0 is about 50 percent, whereas the error

introduced by neglecting the lapse rate in the first and third terms on the right-hand side of

equation (A19) is small (about 4 percent after the integration to follow).)

Integrating equation (A19) over the volume of the core gives the total diabatic heating rate

(_(t) (in W) as

Q, = 7ra2cp T°B + w _ p dz - _ra2w [p(h) - p(b)]

[ (0 )]i1 l °a= cpT°B+w Cp _z+g - _Pb
(A20)

where (as in eq. (2b)) the dependence of p on B has been neglected.

Substituting the supercell parameters from table I gives

0 (t) = 2.92 x 10 '1 w (t) a2 (t) (A21)

where the /) term (which contributes less than 1 percent for the supercell solution) has also
been ncglected. Because equation (A21) is independent of/), this formula may be interpreted as

2O



thediabaticheatingrequiredto maintainneutral buoyancy in the core. The additional heating

required to give the buoyancy shown in figure 3(c) is negligible by comparison.

The corresponding moisture influx _/v (in g-s -1) is given by dividing by the latent heat of

condensation Lc
/_/v (t) = 11.7 w (t) a 2 (t) (A22)

Results of equations (A21) and (A22) give, respectively, the (temperature lapse modified) rate

that heat or water vapor must be supplied to the core in order to support the inertial oscillation

of the supercell solution.
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Appendix B

Physical Interpretation of Translation Formulas

With thehorizontalderivativesof the innerpressure(eqs.(10a)and(10b)),wemaycombine
equations(8a)and (Sb)intoa singlevectorequation

D
-ff (Vb -- _c) + _ _ x (Vb -- rc) + .0 x _w

VHP

P
2_t x _w - 2f_z_ × Vb

where carats over tile symbols denote unit vectors and

(B1)

Vb -- (Ub,Yb,0)

_c = (_c, 9c, 0)

_THp - _-Y(-D, ¢, O) (B2)
p e

This result can be interpreted physically by considering an air parcel in the core and

comparing equation (B1) with the momentum equation (5). The first term in equation (B1)
represents the horizontal acceleration of the parcel resulting from translation of the divergence

relative to the constant flow V b. (Recall that the reference level (here taken to be b) can be any

level in the middle layer, as mentioned in section 3.1.) The second term is interpreted similarly
for relative translation of the vortex. The third term represents the horizontal acceleration

of the parcel resulting from its upward motion amid vertical wind shear. (As mentioned in

section 4.7, this term contributes to the right turn of the track during the intense phase when

w, D, and _ all change signs.) These accelerations of the parcel are balanced on the right-hand

side of equation (B1) by the force per unit mass resulting from the horizontal pressure gradient
(eq. (B2)) and from the Coriolis force on the updraft and constant flow.
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Appendix C

Further Properties of Inertial Oscillation

C1. Effect of Varying Peak Rossby Number

We will see how the waveforms for _(t) and D(t) change as the (peak) initial value _(0) varies

from very small to large positive values (relative to l-lz = 4.77 × 10-5 s-l), with D(0) -- 0. The

corresponding peak Rossby number is given by Ro(0) = _(0)/(2_z). For the supercell solution,

Ro(0) -- 3.14, and the corresponding waveforms for _(t) and D(t) are given in figures 3(a)
and (b). These waveforms are explained physically (in section 5.2) by the inertial motion of

parcels on the periphery of the core, as shown in figures 6(c) and (d).

For Ro(0) << 1, the nonlinear terms in the differential equations (8e) and (8f) can be neglected,
and the waveforms are given by the simple harmonic expressions

¢ (t) = (0)cos 2n t
JD (t) = _ (0) sin 212zt

(C1)

which have the same inertial period U/_z as the nonlinear solution. Comparing equations (C1)
with the waveforms in figures 3(a) and (b) shows that as Ro(0) increases, the period divides into

a quiescent phase and a rapidly varying intense phase.

The waveforms for a large Rossby number Ro(0) = 31.4 are plotted in figures 7(a) (e). (The

corresponding peak temperature excess in the core is 1.06 K, which is reasonable for an updraft.)
We see that as the peak Rossby number Ro(0) becomes large, the intense phase of the cycle

_(t) :> 0 becomes short. (In fact, the duration of the intense phase is roughly proportional to

[Ro(0)]-1/2). This relationship, figures 7(a) (e), and the corresponding inertial motion shown

in figure 6(e) demonstrate the ability of the Coriolis force (in concert with the buoyant force) to
generate high Rossby number flows of rapid growth and short duration.

C2. Inertial Oscillation of Anticyclonic Rotating Draft

The numerical solutions for _(t) and D(t) presented in figures 3(a) and (b) repre-

sent a nonlinear inertial oscillation about the values _ --- 0, D = 0 in the domain
-212z < _(t) < oc, -oc < D(t) < co. However, the oscillatory equations (8e) and (8f) remain
unchanged by the substitution _1 = __ _ 4_z, D t = D. Hence, a similar oscillation also exists

about the values _ -- -4flz, D = 0 in the domain -oc < _(t) < -2gtz, -oc < D(t) < oc. This

second domain may be applicable to an anticyclonic supercell, as explained physically in sec-

tion 5.5 and shown in figures 8 and 6(f). The corresponding curves for D(t), B(t), and a(t) are
the same as in figures 3(b)--(d); however, for otherwise similar initial conditions, the track of the

anticyclonic rotating draft turns to the left, in agreement with observation (ref. 3).
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C3. Steady-State, Anticyclonic Vortex

The inner equations (4), (8e), (8f), (9), (A3), (All), and (A20) also admit a steady-state

solution given by
= -4f_z

b = -2_z

(c2)

5:c = 2_y

D=w=iI_=B=Q=O

and a, _, _, Ub, and Vb are arbitrary constants. The corresponding inertial motion is shown in

figure 6(g) except that "_HP is given by equations (10a) and (10b).

The translation of this anticyclonic vortex is due eastward, with a maximum speed of about

1 m-s 1 occurring at the equator. The arbitrary constants could, in principle, be determined by

matching this inner solution to the environmental flow. No cyclonic steady-state solution of the

inner equations exists. Even the null solution, _(t) = D(t) = 0, could be excluded because, by
equations (9a) and (9b), the translational velocity components kc(t) and ilc(t) become unbounded

unless Ub = Vb = 0 also.
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Table I. Initial Values and Parameters Used in Supercell Solution

D(0), s-1 .............................. 0
4(0), s -1 .......................... -1.74 x 10 -4

r/(0), s -1 .......................... 9.85 x 10 -4

_(0), s -1 ........................... 3.0 x 10 -4

w(0), m-s -1 ............................. 0
a(0), km ............................ 13.8

0(0), rad .............................. 0

xc(O), m .............................. 0
yc(O), m ............................... 0

Ub, m-s -1 ............................. 8.33

Vb, m-s -1 ............................. 1.42

f_y, s -1 .......................... 5.49 × 10 -5

f_z, s -1 .......................... 4.77 × 10 -5
m -1 ........................... 1.25 × 10 -4

b, km .............................. 4.43

h, km ............................... 8.0

p_, kg-m -3 ............................. 0.77

p(b), kPa ............................ 60.5

T(b), K .............................. 273
T(h), K .............................. 253

OT/Oz, K-m -1 ....................... -5.6 x 10 -3

T °, K ............................... 273

Table II. Computational Time and Mountain Daylight Time for Supercell Solution

Description

Middle of quiescent phase, maximum core diameter

Intermediate quiescent phase

End of quiescent phase, beginning of intense phase, zero rotation

Maximum horizontal convergence, maximum downdraft speed,

zero buoyancy

Intcrmediate intense phase

Middle of intense phase, minimum core diameter, maximum rotation rate,
transition point for w, turning point of path

Intermediate intense phase

Maximum horizontal divergence, maximum updraft speed, zero buoyancy

End of intense phase, beginning of quiescent phase, zero rotation

Intermediate quiescent phase

Middle of quiescent phase, maximum core diameter

t, ks

32.9

44.6

56.3

60.9

63.6

65.9

68.2

70.9

75.5

87.2

98.9

MDT

0653

1008

1323

1439

1523

1602

1641

1725

1841

2156

0111
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(a) Cartcsia.n framc x, y, z.
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_tPX

(b) Alternativc cylindrical frame r, 0, z.

Figure 1. Local tangential coordinate frame whose origin is fixed at point on surface of Earth (mean
sea level) of latitude ¢ and east longitude _.
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Figure 2. Idealized vertical rotating draft with core of radius a(t) between heights b and h.
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Figure 3. Supercell inner solution of equations (4), (Sc) (8f), (9), (A3), (All), and (A21) for initial

values and parameters given in table I. The intense phase of each cycle is indicated by a solid

line, and quiescent phase by a broken line.
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a 2

VHp= 0 /

(a) Horizontal, friction-
less, inertial motion
of fluid parcel with
speed vi.

(b) Basic rotating draft that
oscillates in place (appen-
dix A) when its core ra-
dius a2 = 57.3 km is at
its maximum.

(c) Cyclonic spin-up result-
ing from the inward track
of inertial parcels on the

core periphery.

vt

(d) Complete inertial cycle. (e) Higher cyclonic spin-up. (f) Anticyclonic spin-up.

(g) Steady-state anticyclonic Rankine

vortex corresponding to solution given
in section C3.

Figure 6. Physics of inertial oscillation of vertical rotating draft, as viewed from above.
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Figure 7. Concluded.
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Figure 8.
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Figure 9. Horizontal flow field sequence for the basic rotating draft that oscillates in place(appendix A).
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A video supplement L-0592-97 is available for purchase.

In this video (8 min., color, sound, VHS), animation depicts the inertial oscillation of a new
mathematical model ("vertical rotating draft") for spinning up a single supereell storm. The

oscillation consists of a long quiescent phase when tile draft is large in diameter and rotates

anticyclonically and a short intense phase when the draft is small and cyclonic. During the intense

phase, the rotating draft resembles a supercell. The physical basis for the oscillation is depicted
by tracking air parcels in the draft as they move along inertial circles (projected on a horizontal

plane), where tile horizontal pressurc gradient is zero and the Coriolis force balances the centrifllgal
force. A side view of the oscillation shows that contraction and expansion are linked, respectively, to

buoyantly driven compressible downdraft and updraft. An aerial view tracks the draft as it moves

above the surface of the Earth and turns to the right during the intense phase. Radar echoes from

a supercell storm are superimposed for comparison. The data appear to support only the intense
phase. A critical experiment would measure the predominantly downward flow that theoretically

occurs before the right turn in a supereell track and causes contraction and spin-up.

Requests for the video should bc addressed to

ATTN USER SERVICES

NASA CENTER FOR AEROSPACE INFORMATION

PO BOX 8757
BALTIMORE MD 21240-0757

Cut here N_: .......................................................

Please send __ copies of video supplement, L-0592-97 to NASA TP-3230.

Attn:

Name

Title

Organization

Street address

City and State Zip code
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